Mark As Completed Discussion

Training the LLM

To train the LLM, we will use the following steps:

  1. Create a training dataset by converting the preprocessed text to sequences of words.
  2. Compile the LLM model with the appropriate loss function and optimizer.
  3. Train the LLM model on the training dataset.

Here's the RNN version:

PYTHON
1# Create a training dataset
2training_dataset = tf.data.Dataset.from_tensor_slices(preprocessed_text)
3training_dataset = training_dataset.batch(64)
4
5# Compile the LLM model
6model = LLM(len(vocabulary), 128, 256)
7model.compile(loss='categorical_crossentropy', optimizer='adam')
8
9# Train the LLM model
10model.fit(training_dataset, epochs=10)

Evaluating the LLM

To evaluate the LLM, we will use the following steps:

  1. Generate text from the LLM model.
  2. Compare the generated text to the original text.
PYTHON
1# Generate text from the LLM model
2generated_text = model.predict(tf.constant([vocabulary['the']], dtype=tf.int32))
3generated_text = vocabulary[tf.argmax(generated_text, axis=1)[0]]
4
5# Compare the generated text to the original text
6original_text = preprocessed_text[0][0].text
7
8print('Generated text:', generated_text)
9print('Original text:', original_text)